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Analytic Spin-Orbit Coupling Matrix Element
Formulae in FLAPW Calculations
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The full-potential, linearized augmented, plane wave (FLAPW) method is used
widely for accurate electronic structure calculations. For the electronic structure of
solids with heavy elements, it is necessary to include spin-orbit coupling interactions.
We present simple analytic formulae for calculating FLAPW spin-orbit matrix
elements. These will serve to simplify the calculations and save computational
time. c© 2001 Academic Press
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The highly precise, full-potential, linearized augmented, plane wave (FLAPW) method
[1] is widely used for local density first principles electronic structure calculations of solids.
In usual calculations, relativistic effects are included at the scalar relativistic level where
only the Darwin and mass–velocity terms are included. Sometimes, it is necessary to include
spin-orbit interaction for more accurate electronic structure calculations of heavy element
solids. While algorithms for including spin-orbit interactions in the FLAPW method are
well known [2, 3], simple formulae for their matrix element calculations have not been
given yet. In this paper, we present simple analytic formulae that can be used easily for
spin-orbit matix element calculations.

It is a good approximation to include spin-orbit effects near the nuclei and to include only
the spherical part of the potential since relativistic effects are important near the nucleus
where the kinetic energy is large. In this approximation the spin-orbit Hamiltonian can be
written as

Hso= 1

(2Mc)2r

dVMT (r )

dr
σ · L , (1)

where

M ≡ m+ 1

2c2
[ε − VMT (r )] (2)

andVMT (r ) is the spherical or muffin-tin part of the potential. The augmented plane wave
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(APW) basis in FLAPW calculations is

φ(kn; r) =
{
Ä−1/2 exp(i kn · r) interstitial region∑

lm[ Alm(kn)ul (El ; r )+ Blm(kn)u̇l (El ; r )]Ylm(r̂ ) inside the muffin-tin,

(3)

where

kn ≡ k + Kn. (4)

HereKn is a reciprocal lattice vector andÄ is the volume of real space unit cell andk
is a vector in the irreducible Brillouin zone. We will delete then index inkn later on for
simplicity, unless otherwise required.ul (El ; r ) andu̇l (El ; r ) are the radial solution and its
energy derivative inside the atomic muffin-tin. The expansion coefficients,Alm and Blm,
are determined by matching the wavefunction continuously at the muffin-tin radius [4].

Alm(k) = 4πR2

Ä1/2
i l al (k)Y

∗
lm(k̂), al (k) = ( j ′l (k)u̇l − jl (k)u̇

′
l ) (5)

Blm(k) = 4πR2

Ä1/2
i l bl (k)Y

∗
lm(k̂), bl (k) = ( jl (k)u

′
l − j ′l (k)ul ). (6)

The spin-orbit matrix element betweenφ(k; r) andφ(k′; r) can be written as

〈φs(k)|Hso|φs′(k′)〉 (7)

=
〈
φs(k)

∣∣∣∣ 1

(2Mc)2r

dVMT (r )

dr
σ · L

∣∣∣∣φs′(k′)
〉

(8)

=
∑

l

Rl
ksk′s′

∑
mm′

Ylm(k̂)〈lms|σ · L|lm′s′〉Y∗lm′(k̂′), (9)

wheres ands′ are added to represent spin directions and the radial part can be written as

Rl
ksk′s′ =

(4πR2)2

Ä

{
as

l (k)a
s′
l (k
′)ξ ss′

l + as
l (k)b

s′
l (k
′)ξ̇ ss′

l

+ bs
l (k)a

s′
l (k
′)ξ̇ s′s

l + bs
l (k)b

s′
l (k
′)ξ̈ ss′

l

}
, (10)

where

ξ ss′
l =

〈
us

l

∣∣∣∣ 1

(2Mc)2r

dVMT (r )

dr

∣∣∣∣us′
l

〉
(11)

ξ̇ ss′
l =

〈
u̇s

l

∣∣∣∣ 1

(2Mc)2r

dVMT (r )

dr

∣∣∣∣us′
l

〉
(12)

ξ̈ ss′
l =

〈
u̇s

l

∣∣∣∣ 1

(2Mc)2r

dVMT (r )

dr

∣∣∣∣u̇s′
l

〉
. (13)

Equation (9) is a usual expression used for the spin-orbit matrix element calculations. It
contains a summation over magnetic quantum numbers,m andm′. In addition, it requires
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calculations of the spherical harmonicsYlm(k̂) for each APWs. We show that the matrix
element calculation in Eq. (9) can be simplified by performing analytic summation as will
be shown in Eq. (28).

The scalar product between spin and orbital angular momenta can be written as

σ · L = 1

2
(σ+L− + σ−L+)+ σzLz (14)

in terms of the raising (+) or lowering (−) operator of the angular momentum; e.g.,

L+ = Lx + i L y, L− = Lx − i L y. (15)

The summation over the magnetic quantum numberm,m′ in Eq. (9) can be performed
analytically by using raising or lowering property ofL+ or L− as shown in the Appendix.
The results are

〈k|L−|k′〉l = −2l + 1

4π
P′l (cosγ )

k′x − ik ′y
kk′

(
−kz+ k′z

kxk′x + kyk′y
k′x

2+ k′y
2 + ik ′z

kxk′y − kyk′x
k′x

2+ k′y
2

)
(16)

〈k|L+|k′〉l = 2l + 1

4π
P′l (cosγ )

k′x + ik ′y
kk′

(
−kz+ k′z

kxk′x + kyk′y
k′x

2+ k′y
2 − ik ′z

kxk′y − kyk′x
k′x

2+ k′y
2

)
(17)

〈k|Lz|k′〉l = i
2l + 1

4π
P′l (cosγ )

kxk′y − k′ky

kk′
= i

2l + 1

4π
P′l (cosγ )

[k × k′]z

kk′
, (18)

where

〈k|L−|k′〉l ≡
∑

m

Y∗lm(k̂)L−Ylm(k̂
′), (19)

〈k|Lz|k′〉l ≡
∑

m

Y∗lm(k̂)LzYlm(k̂
′), (20)

〈k|L+|k′〉l ≡
∑

m

Y∗lm(k̂)L+Ylm(k̂
′), (21)

Pl (x) and P′l (x) represent the Legendre polynomials of orderl and their derivatives with
respect tox andγ is the angle betweenk andk ′. From the above equations, we can see that
the complex conjugate of a spin-orbit coupling (SOC) matrix element has the property

〈k′|L−|k〉∗l = −〈k′|L+|k〉l . (22)

If we interchange the order of application of the basis fork andk′, the summations change
sign; for example,

〈k′|L−|k〉l = −〈k|L−|k′〉l . (23)
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Spin-angular integration in Eq. (9) can be written∑
l Rl

kk′
∑

mm′ Ylm(k̂)〈lms|σ · L|lm′s′〉Y∗lm′(k̂′) (24)

=∑l Rl
kk′

(
1

2
〈s|σ+|s′〉〈k′|L−|k〉l + 1

2
〈s|σ−|s′〉〈k′|L+|k〉l + 〈s|σz|s′〉〈k′|Lz|k〉l

)
. (25)

If we use the relation Eq. (15),〈k|Lx|k′〉l and〈k|L y|k′〉l can be calculated

〈k|Lx|k′〉l = i
2l + 1

4π
P′l (cosγ )

[k × k′]x

kk′
(26)

〈k|L y|k′〉l = i
2l + 1

4π
P′l (cosγ )

[k × k′]y

kk′
. (27)

We can see that the summations forLx, L y, andLz are purely imaginary from the above
equations and Eq. (18). From Eqs. (18), (26), and (27), the SOC matrix element in Eq. (9)
can be written simply by using the vector product of twok vectors of the APWs as

〈φs(k)|Hso|φs′(k′)〉 = i
σ · (k × k ′)

kk′
∑

l

2l + 1

4π
Rl

ksk′s′P
′
l (cosγ ), (28)

where

σ · (k × k ′) = 〈s|σx|s′〉[k × k′]x + 〈s|σy|s′〉[k × k′]y + 〈s|σz|s′〉[k × k′]z. (29)

We can see the property of Eq. (23) follows from the property of the vector product in
Eq. (28). While the SOC matrix elements in Eq. (28) become purely imaginary ifs and
s′ indicate the same spin directions, they are complex numbers since the spin parts are
complex numbers. While a similar form to Eq. (28) appears in a planewave pseudopotential
formulation [5], that formulation cannot be applied directly to the FLAPW method.

Several points are appropriate for discussion at this point. First, the spin part of the
matrix element in Eqs. (24) and (29) can be calculated by applying eigen-spinors ofσ · B
to both sides of the spin matrices, whereB is an infinitesimal magnetic field. Second, if the
magnitude ofk or k′ vanishes, the summation formulas cannot be used. In this case, the
spin-orbital matrix element is zero sincek = 0 in the interstitial region gives a vanishing
orbital momentum in the muffin-tin region. Third, we removed the summation over the
magnetic quantum numbersm andm′ of the spherical harmonics in Eq. (9) in the matrix
element calculation which simplifies the calculation.

To conclude, we derived a simple analytic formula that can be used for the calculation
of spin-orbit matrix elements in the FLAPW method. This formula can save computational
time and simplify the calculation.

APPENDIX

〈k|L−|k′〉 =
∑

m

Y∗lm(k̂)L−Ylm(k̂
′) (A.1)

= L ′−
∑

m

Y∗lm(k̂)Ylm(k̂
′) (A.2)
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= L ′−
2l + 1

4π
Pl (cosγ ) (A.3)

= −2l + 1

4π
P′l (cosγ ) exp(−iφ′){−cosθ sinθ ′ + sinθ cosθ ′ cos(φ − φ′)

−i cotθ ′ sinθ sinθ ′ sin(φ − φ′)} (A.4)

= −2l + 1

4π
P′l (cosγ )

ky − ik ′y
kk′

(
−kz+ k′z

kxky + kyk′y
k′x

2+ k′y
2 + ik ′z

kxk′y − kyky

k′y
2+ k′y

2

)
. (A.5)

L ′− meansL ′− operator acts on the coordinate ofk′. In the above calculation, use was made
of the angular representation of the lowering and raising operator.

L− = Lx − i L y = −exp(−iφ)

{
∂

∂θ
− i cotθ

∂

∂φ

}
(A.6)

L+ = Lx + i L y = exp(iφ)

{
∂

∂θ
+ i cotθ

∂

∂φ

}
. (A.7)

The angleγ betweenk andk′ is given by

cosγ = cosθ cosθ ′ + sinθ sinθ ′ cos(φ − φ′). (A.8)

In a similar way,

〈k|L+|k′〉 =
∑

m

Y∗lm(k̂)L+Ylm(k̂
′) (A.9)

= 2l + 1

4π
P′l (cosγ )

ky + ik ′y
kk′

(
−kz+ k′z

kxky + kyk′y
k′y

2+ k′y
2 − ik ′z

kxk′y − kyky

k′y
2+ k′y

2

)
(A.10)

〈k|Lz|k′〉 =
∑

m

Y∗lm(k̂)LzYlm(k̂
′) (A.11)

= i
2l + 1

4π
P′l (cosγ )

kxk′y − kyky

kk′
. (A.12)
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