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Analytic Spin-Orbit Coupling Matrix Element
Formulae in FLAPW Calculations
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The full-potential, linearized augmented, plane wave (FLAPW) method is used
widely for accurate electronic structure calculations. For the electronic structure of
solids with heavy elements, itis necessary to include spin-orbit coupling interactions.
We present simple analytic formulae for calculating FLAPW spin-orbit matrix
elements. These will serve to simplify the calculations and save computational
time. (© 2001 Academic Press
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The highly precise, full-potential, linearized augmented, plane wave (FLAPW) meth
[1]is widely used for local density first principles electronic structure calculations of solic
In usual calculations, relativistic effects are included at the scalar relativistic level whe
only the Darwin and mass—velocity terms are included. Sometimes, itis necessary toinc
spin-orbit interaction for more accurate electronic structure calculations of heavy elemr
solids. While algorithms for including spin-orbit interactions in the FLAPW method ar
well known [2, 3], simple formulae for their matrix element calculations have not be
given yet. In this paper, we present simple analytic formulae that can be used easily
spin-orbit matix element calculations.

Itis a good approximation to include spin-orbit effects near the nuclei and to include ol
the spherical part of the potential since relativistic effects are important near the nucl
where the kinetic energy is large. In this approximation the spin-orbit Hamiltonian can
written as

1 dWur()
so __ .
H™ = (2Mc)2r  dr o-L, @)
where
_ 1
M=m+2T:2[€—VMT(T)] (2

andVy (r) is the spherical or muffin-tin part of the potential. The augmented plane wa
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(APW) basis in FLAPW calculations is

ki D) Q12 expliky, - 1) interstitial region
1) =
) Sl Am (KU (Ei; 1) + Bim (Kn) Ui (Ei; D] Yim(P)  inside the muffin-tin
3)
where
kn =k + Kp. @)

HereK, is a reciprocal lattice vector ard is the volume of real space unit cell akd
is a vector in the irreducible Brillouin zone. We will delete théndex ink,, later on for
simplicity, unless otherwise required(E;; r) andu, (E;; r) are the radial solution and its
energy derivative inside the atomic muffin-tin. The expansion coefficidtsand By,
are determined by matching the wavefunction continuously at the muffin-tin radius [4].

7 R? ~ . .

Am(K) = Ql/zleuk) L. ak = (/o — jika) (5)
7 R? . .

Bim(K) = Qm oYK, b = (itkou — k). (6)

The spin-orbit matrix element betweettik; r) and¢ (k’; r) can be written as

(B> (k) H>|$° (K) -
— S 1 dVMT(r)
- <¢ (k)’ Ve dr ° )> .
= Z Rksks’ Z Ylm(k) |mS|o' L||m g )Ylm (k,) (9)

mm

wheres ands’ are added to represent spin directions and the radial part can be written

2 2
Risks =( =0 {a*(0a () + aP (k)b (k)&
+ b. (K)af (K)E® + bP(k)bF (K)E>}, (10)
where

ss s 1 dVMT(r) s
i = <u| (2Mc)2r  dr 4 > (11)
ts¢ /s 1 dVMT(r) s
= <u| (2Mc)?r  dr 4 > (12)
s /s 1 dVut () g
S = <u| @Mmozr  dr | > (13)

Equation (9) is a usual expression used for the spin-orbit matrix element calculation:s
contains a summation over magnetic quantum numbeendm’. In addition, it requires
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calculations of the spherical harmonMaq(IA() for each APWs. We show that the matrix
element calculation in Eq. (9) can be simplified by performing analytic summation as w
be shown in Eq. (28).

The scalar product between spin and orbital angular momenta can be written as

1
o-L= §(0+L,+J,L+)+GZLZ (14)
in terms of the raisingL) or lowering () operator of the angular momentum; e.g.,
L+=Lx+iLy, L7=Lx_iLy. (15)

The summation over the magnetic quantum numbem’ in Eq. (9) can be performed
analytically by using raising or lowering property bf. or L _ as shown in the Appendix.
The results are

2l +1 ki, —ik] kek +kyk,  kek( — kyk;
KIL_|K) = ———PF L =k + K, Y ik, — .
Ik ar COSY) e SR LNV g
(16)
2+1 Kk, +ik! keky +kyk,  kekl — kyk;
KIL4K) = ——PF/ L =k + K, Y — ik, — .
(KIL 4 1K) - | (Cosy) KK z T K; k),(z_'_kglz z k§(2+k§,2
17)
L 2A41 ki, —Kky 241 [k x k'],
(KL K'Y = IWF’.(cosw K = . Pi(cosy)=— (18)
where
KIL_K) = YL Yim(K), (19)
m
KILAK Y = Yim (KL, Yim(K), (20)
m
KIL+IKY =Y Yim (0L Yim(K), (21)
m

R (x) and P/ (x) represent the Legendre polynomials of ortland their derivatives with
respect tok andy is the angle betwednandk’. From the above equations, we can see tha
the complex conjugate of a spin-orbit coupling (SOC) matrix element has the property

(KL_[k)[" = —(K'|L 4 [K):. (22)

If we interchange the order of application of the basidkfandk’, the summations change
sign; for example,

(K'IL_k) = —(kIL_[K')1. (23)
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Spin-angular integration in Eq. (9) can be written
321 Rete Cnr Yim(K)(Imsfor - LlIm's)yYiz, (k') (24)

1 1
=21 Rue (§(S|0+|S’><k’||-|k)| + E(Slmls’)(k/lhlk)l + (SIUzls’)(k’lelk)l)« (25)

If we use the relation Eq. (15)k|Ly|k"); and(k|L|k’); can be calculated

, __2|+1 , [k x K«
(k|Lx k') = IT R (COSV)T (26)
[k x k'ly

o 2A+1
(KILy|K') = = Picosy)—

(27)
We can see that the summations fgy, Ly, andL, are purely imaginary from the above
equations and Eqg. (18). From Egs. (18), (26), and (27), the SOC matrix element in Eq.
can be written simply by using the vector product of tveectors of the APWSs as

.o~(kxk/)22l+l

(@S(K)IH1p% (K)) = i i e Risks P/ (COSY), (28)

where
o - (k x k') = (slox|s) [k x K'Ix + (sloy|s)[k x KTy + (S|oz|s))[k x k'],. ~ (29)

We can see the property of Eq. (23) follows from the property of the vector product
Eq. (28). While the SOC matrix elements in Eq. (28) become purely imaginarariid
s’ indicate the same spin directions, they are complex numbers since the spin parts
complex numbers. While a similar form to Eq. (28) appears in a planewave pseudopotet
formulation [5], that formulation cannot be applied directly to the FLAPW method.

Several points are appropriate for discussion at this point. First, the spin part of
matrix element in Egs. (24) and (29) can be calculated by applying eigen-spinprsBof
to both sides of the spin matrices, wh&s an infinitesimal magnetic field. Second, if the
magnitude ok or k’ vanishes, the summation formulas cannot be used. In this case, 1
spin-orbital matrix element is zero sinke= 0 in the interstitial region gives a vanishing
orbital momentum in the muffin-tin region. Third, we removed the summation over tt
magnetic quantum numbens andm’ of the spherical harmonics in Eg. (9) in the matrix
element calculation which simplifies the calculation.

To conclude, we derived a simple analytic formula that can be used for the calculat
of spin-orbit matrix elements in the FLAPW method. This formula can save computatior
time and simplify the calculation.

APPENDIX

(KIL_IK) = Y (L Yim(K) (A1)

=LY Vi (K Yim(K) (A.2)
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2
— ;H(cos ) (A.3)
2+ , ,
= —4—P, (cosy) exp(—i¢"){—cosh sind’ + sind coshd’ cog¢p — ¢’)
—i cotd’ sind sind’ sin(p — ¢')} (A.49)
2 +1 ky —ikj Keky +kyk{  kek{ — kyky
=-=—_"p —k; + K, Y ik, —2 . (A5
il T ety ;2 T ki? + ki ? (A-3)

L” meand.’ operator acts on the coordinateldf In the above calculation, use was made
of the angular representation of the lowering and raising operator.

a
Lo=Lx—iLy=—exp— |¢){—|cot93¢} (A.6)
0 9
L+_LX+|Ly_exp(|¢){—+|c0t9£} (A.7)

The angley betweerk andk’ is given by

COSy = c0sd cosd’ + sing sind’ cogp — ¢'). (A.8)
In a similar way,
(KILL 1K) = Y (L Yim(K) (A.9)
m
20 +1 ky + ik}, < Kky + kyK,  kek! — Kyky
= P/ (cosy) - ko + K, T > — ik, ———
Ax kk ki? +k; k® + k|
(A.10)
(KILZIK) = Y (0L Yim(K) (A.11)
m
2| +1 kyk{ — kyky
P s E—— A A.12
/' (cosy) K (A.12)
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